Identification of Hammerstein model using functional link artificial neural network

نویسندگان

  • Mingyong Cui
  • Haifang Liu
  • Zhonghui Li
  • Yinggan Tang
  • Xin-Ping Guan
چکیده

In this paper, a novel algorithm is developed for identifying Hammerstein model. The static nonlinear function is characterized by function link artificial neural network (FLANN) and the linear dynamic subsystem by an ARMA model. The utilization of FLANN can not only result in a simple and effective representation of static nonlinearity but also simplify the learning algorithm. A two-step procedure is adopted to identify Hammerstein model by using a specially designed input signal, which separates the identification of linear part from that of nonlinear part. Levenberg–Marquart algorithm is used to learn the weights of FLANN. Simulation examples demonstrate the effectiveness of the proposed method. & 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Engineering Application Of Correlation on Ann Estimated Mass

A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...

متن کامل

Double Cracks Identification in Functionally Graded Beams Using Artificial Neural Network

This study presents a new procedure based on Artificial Neural Network (ANN) for identification of double cracks in Functionally Graded Beams (FGBs). A cantilever beam is modeled using Finite Element Method (FEM) for analyzing a double-cracked FGB and evaluation of its first four natural frequencies for different cracks depths and locations. The obtained FEM results are verified against availab...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Hammerstein-Wiener Model: A New Approach to the Estimation of Formal Neural Information

 A new approach is introduced to estimate the formal information of neurons. Formal Information, mainly discusses about the aspects of the response that is related to the stimulus. Estimation is based on introducing a mathematical nonlinear model with Hammerstein-Wiener system estimator. This method of system identification consists of three blocks to completely describe the nonlinearity of inp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2014